
front of the DCSW and, hence, AE are appreciably greater. This also leads to the intensive 
development of cavitational flow. 

In accordance with the experimental results obtained here, a reduction in T (i.e., a 
reduction in the time of propagation of the SW) is accompanied by a reduction in the energy 
threshold for failure of the fluid volume. Thus, with a decrease in ~ from 9.4 to 2.26, the 
value of e, decreases from 5 to 1.3 J/g. This is evidently connected with the fact that at 

= 2.26, nearly all of the energy of the DCSW is converted to work to expand cavitation bub- 
bles, while at �9 = 9.4 it is converted to kinetic energy associated with the radial expansion 
of the fluid ring. Only part of this energy is expended on the development of perturbations 
on the boundaries of the fluid volume, which also lead to its failure. 

If we introduce the parameter N = e/T - the rate of release of explosive energy (i.e., 
the rate of release of specific explosive energy averaged over the loading time), then at 
e = e... the parameter N.~ = e.../T takes similar values in all of the cases shown in Fig. 2b-d: 
N... = 40, 3(i, and 43 kJZ(g'sec), respectively. Thus, whereas e.~ depends on the loading time 
(i.e., on the parameters of the SW and the explosion bubble), The threshold value of the rate 
of release of explosive energy N, is a more universal parameter. It characterizes the energy 
threshold for failure of the water volume, since loading remains nearly constant within the 
range of conditions examined here. 

We thank V. K. Kendrinskii for his discussion of this investigation. 
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CALCULATION OF THE DISPERSION OF A COMPRESSED VOLUME 

OF A GAS SUSPENSION 

Yu. V. Kazakov, A. V. Pedorov, and V. M. Fomin UDC 532.529:533.6.071.1 

Much attention is currently being given to the physical and mathematical modeling of 
multiphase systems due to the extensive use of various types of technologies which involve 
heterogeneous and homogeneous media. Surveys of the mathematical modeling of certain prob- 
lems of the mechanics of heterogeneous media can be found in [1-3]. 

In experiments set up to study the wave dynamics of a gas suspension of solid particles, 
the emphasis is generally placed on the interaction of shock waves (SW) with clouds of dust- 
laden gas. An experimental study was made in [4] of the rarefaction of a gas suspension in 
order to examine the effect of the dust content of a medium with a high mass content of par- 
ticles under high pressure on the parameters of a shock wave formed in the discharge of such 
a medium into free space. The question of the discharge conditions is important from the 
viewpoint of the safety of different types of equipment (pipelines for transporting bulk ma- 
terials, chemical reactors employing fluidization, etc.). The process of rarefaction of a 
gas suspension was examined in [5]. Here, the authors ignored the volume content of parti- 
cles and analyzed the dispersion of a gas suspension in a vacuum. The study [6] calculated 
the explosive dispersion of a cloud of a gas suspension in the case of relatively small 
volume contents of the disperse phase, while the study [7] examined an outburst of coal and 
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gas in an equilibrium approximation. A more complete bibliography of the experimental and 
theoretical investigations of the dynamics of gas suspensions can be found in [1-3, 8]. 

We will examine the solution of the problem of determining the flow in a shock tube in 
the case where the high-pressure chamber (HPC) of the tube contains a gas suspension of fine 
particles and the low-pressure chamber (LPC) contains air (GP problem). The mixture is sep- 
arated from the gas by a diaphragm which ruptures at the initial moment of time. This allows 
a shock wave (SW) to propagate into the low-pressure region. The wave is followed in succes- 
sion by a contact discontinuity and a combination discontinuity (CBD). A rarefaction wave 
(RW) propagates in the gas suspension. After the RW is reflected from the wall of the HPC, 
when the RW and SW begin to interact, the SW undergoes attenuation. We will also study the 
G problem - the variant of the GP problem when the HPC contains pure gas. 

It was established in [4] that compared to the case of pure gas in the HPC, the ampli- 
tude of the resulting shock waves is low and it takes longer for the formation of a triangular 
pressure pulse. It is also apparent that the process in question cannot be described within 
the framework of an equilibrium approach. In fact, the simplest analysis of the characteris- 
tic times [9] for the process studied in [4] shows that at d ~ I0 ~m the characteristic dura- 
tion of the gas-dynamic process is less than the velocity and temperature relaxation times. 
This is due to the n0nequilibrium of the process. Thus, here we analyzed the process of 
rarefaction of a gas suspension within the framework of nonequilibrium theory for large-vol- 
ume fractions of the disperse phase. 

The equations describing this flow in a nonequilibrium approximation have the form 

@~l~t + . S p ~ u / a x  = O, 

@~uil~t § @iu~/ax + miaplax = (--  t / + 1  I, 

O(p1E1 -6 p2E2)lOt -60(plu~E1-6p2u2E2 + p(m~u~ -6 
-6 m~u2))/Ox = O, Op2e~/Ot -60p2u2e2/Ox = q, 

p = pnRT1, ml -6 ms = ! '  P~ = p~m~, P22 = const, 

e~.= ciTi, Ei = ei + u~/2, ~ = 1 ,  2. 

Here  P i ,  u i ,  e l ,  T i ,  mi a r e  t h e  mean d e n s i t y ,  v e l o c i t y ,  i n t e r n a l  e n e r g y ,  t e m p e r a t u r e ,  and 
vo lume f r a c t i o n  o f  t h e  i - t h  p h a s e  ( t h e  s u b s c r i p t  i = 1 p e r t a i n s  t o  p a r a m e t e r s  o f  t h e  g a s ,  
i = 2 p e r t a i n s  t o  p a r a m e t e r s  o f  t h e  p a r t i c l e s ) ;  p i s  p r e s s u r e ;  E i i s  t h e  t o t a l  e n e r g y  o f  t h e  
i - t h  p h a s e ;  t h e  t e r m s  f and q ,  d e s c r i b i n g  t h e  m e c h a n i c a l  and t h e r m a l  i n t e r a c t i o n  o f  t h e  
p h a s e s ,  a r e  a n a l o g o u s  t o  t h o s e  u s e d  in  [ 1 0 ] :  

] = O,125n~d2CDpnlul- u2](ul --u2), n = 6m,l~d ~, 

': [C1 = 24/Re + 4,4/Re ~ + 0,42, m 2 ~< 0,08, 

CD = iC2 = (4/3 ml)(1,75 + t50 ( m , R ~ - l ) ,  m2 > 0,45, 
! 

! 
t((m2 - -  0,08) Cs + (0,45 - -  m2) C1)/0,35, 0,08 < ms ~< 0,45, 

q = nndk Nu (T 1 - -  T2), 

I2 + 0,t06RePr 5'a3, Re~-~ 200, 

N u =  [2,274 + 0,6Be~ ~ Re > 200, 

Re = P i i ] u l  - -  u 2 1 d  ~ ,  Pr = c2~/~. 

The above system of equations was solved with the following initial-boundary conditions and 
parameter values: 0 < x < s = 0.07 m: m I = 0.8375, m 2 = 0.1625, u I = u 2 = 0, N = P2/Pl = 
50, T I = T 2 = 300 K, PI~ = 5.651 kg/m s, p~= = 1460 kg/m s, ~ = 1.66, c= = 710 m2/(sec.deg), 
c~ =3128m=/(sec2-deg), p = 1.85-10 -s kg/(m.sec), X = 0.143 kg-m/(secS/deg); x ~ 0: m~ = i, 
m= = 0, ux = 0, T~ = 300 K, ~ = 1.4, c~ = 716 m=/(sec2-deg), p~ = 0.11639-11.639 kg/mS; 

x = s u~(t) = O. 

To perform the calculations, we used a modification of the coarse particle method, with 
tracking of the contact and combination discontinuities [6]. This algorithm has been pre- 
viously tested only for exact solutions of gas-dynamic equations [Ii]. It is useful to per- 
form test calculations for exact solutions ofequations of the mechanics of heterogeneous 
media as well [8]. This topic is even more fundamental, since it is known that the system 
of equations is nonhyperbolic in the case of velocity nonequilibrium with (u~ - u=) ~ < 
a~(l + (p~ms/p2=m~)~) s [8, 12, 13]. The problem of the stability of difference methods 
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for two-velocity models was discussed in [13, 14], where it was noted that at h >> d (h is 
the mesh of the difference grid and d is the diameter of an occlusion of the disperse phase) 
the characteristic buildup period of perturbations (with a wavelength ~ h) which can be gen- 
erated in the computation is significantly greater than the characteristic relaxation time. 
Thus, on the given difference grid, perturbations will not build up for a certain relation- 
ship between �9 and h which follows from the Curant condition. Here, it is natural to require 
that h >> d, since we are using a continuum approach to describe particles of a gas suspen- 
sion, and effects with a characteristic size d cannot be described in this case. As a test 
calculation, we solved the problem of the propagation of a steady isothermal shock wave in 
a gas suspension [8]. It was found that the difference solution is close to the analytical 
solution, the discontinuity becomes diffuse over 4-5 cells of the grid, and the relaxation 
zone is satisfactorily reproduced. The test calculation allowed us to analyze certain fea- 
tures of the numerical investigation of problems of the mechanics of heterogeneous media. 

Let us proceed to the discussion the results of calculations of the above-formulated 
problem. Figure 1 shows Pressure distributions over time: A) at the point x = -0.2 m, B) 
at the point x = -0.44 m, i) problem G, 2) problem GP, q = 50, d = i00 ~m, 3) q = 50, d = 
20 ~m at Pl/P0 = 35. It is evident that in the G case, a characteristic triangular profile 
has already been formed. This contrasts with the case GP, where flow is represented by a 
nearly stepped pulse with a shock wave of lower amplitude. Figure 2 shows pressure distribu- 
tions in the tube at the moment of time t = 330 sec. Here, 1 corresponds to the problem G, 
and 2 and 3 correspond to the problem GP at q = 50 and d = i00 and 20 ~m, respectively. It 
is evident that gas pressure in the HPC decreases more rapidly in problem G than in problem 
GP, which is due to interphase friction and heat transfer. The characteristic pressure de- 
cay time in the HPC increases with a decrease in particle diameter for a fixed mass ratio 
q. A reduction in particle diameter leads to an increase in the drag which the particles 
exert on the gas and to more intensive entrainment of particles. The latter is a consequence 
of the fact that the expression for the resistance force contains terms which are proportion- 
al to d -I and d -= Heat transfer also intensifies with a reduction in particle diameter. 
On the one ]hand, the gas is cooled as the RW passes. On the other hand, it is heated due to 
presence of warm particles. 

The results of the calculations were used to construct the dependence of the mean veloc- 
ity of the SW on the section between x =-0.2 m and x =-0.68 m on the initial ratio of 
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pressures on the diaphragm with a fixed pressure in the HPC. It should be noted that the 
velocity is variable in this case, since the RW reflected from the wall catches up with the 
SW, and the SW is slo~ed as a result of its interaction with the RW. This fact was not spec- 
ified in [4], although it is obvious that it might be important in certain situations. Fig- 
ure 3 shows theoretical dependences of the Mach number of the SW on log (Pl/P0): 2) q = 50, 
d = I00 ~m, 4) q = 50, d = 20 Bm; 3) experiment, i) G Flow, 5) theoretical curve obtained 
within the framework of the equilibrium approach. It can be seen that the dependence of the 
velocity of the SW on log (Pl/P0) for nonequilibrium flow lies within the boundaries corre- 
sponding to frozen and equilibrium flow [4]. The study [4] did not report any information 
on the size of the particles used in the experiment. However, it can be seen from Fig. 3 
that themost satisfactory agreement between the theoretical and experimental curve is ob- 
tained at d = 20 ~m. This makes it possible to assume that particles with an effective di- 
ameter d = 20 ~m were used in the experiment. The accuracy of this conclusion is on the same 
order as the accuracy of our representation of the parameters characterizing the mechanical 
and thermal interaction of the phases. Figure 4 shows distributions of gas pressure at 
q = 50, d = I00 ~m, and Pl/P0 = 35 at points A (x = -0.2 m), B (x = -0.44), and C(x = -0.68 
m). Here, 1 shows values for C D and Nu from [i0], while 2 shows values for c D = 24/Re and 
Nu = 2. The second variant of description of the phase interaction leads to a situation 
whereby the mechanical and thermal interaction of the phases is reduced considerably and the 
flow approximates frozen flow. 

Let us deal briefly with the structure of the RW in the gas suspension next to the qui- 
escent region. Perturbations transmitted in the gas phase cause the gas to move. Under the 
influence of the gas, the particles begin to accelerate and, after a certain amount of time, 
attain equilibrium with the gas phase with regard to velocity and temperature. Similarly 
to the relaxation zone in a frozen SW, the rarefaction wave propagating in the mixture is 
also associated with a relaxation zone. In the case described above, the relaxation zone 
is adjacent to the leading edge of the RW x = xs which is characterized by the fact that 
the flow parameters are variable just to the left of the edge and are constant just to the 
right (we are speaking of the flow before the RW interacts with the wall). 

Figure 5 shows theoretical x-t diagrams of the propagation of the head of the RW in 
the HPC at Pl/P0 = 350; 5) pure gas in the HPC, 2) gas suspension with q = 50, d = 20 ~m, 
3> gas suspension with q = 50, d = 40 ~m. Here, the front of the RW in the calculation was 
determined from the position of the point at which the pressure of the gas differed 2% from 
the undisturbed pressure in the HPC. Such a criterion makes it possible to allow for the 
effect of artificial viscosity, which causes erosion of the front. Figure 5 also shows 
curve i, corresponding to the trajectory of the head of the RW obtained from the equilibrium 
theory, x = ae t, a e = 136 m/sec. Curve 4 in Fig. 4 represents the trajectory of the head 
of the RW in a pure gas with x = at, a = 1014 m/sec. At the initial moment of time, the dia- 
phragmwas located in the cell i = i00. It follows from a comparison of analytical curve 
4 and theoretical curve 5 that computational effects lead to overstatement of the velocity 
of the RW head at the initial moments of time. Analysis of the calculations permits the con- 
clusion that the "apparent" velocity of the front edge of the RW can be determined in the 
gas suspension. This quantity can be fixed in the experiment. It is also possible to deter- 
mine the actual velocity of the leading edge, which is attenuated considerably by processes 
related to interphase friction. Here, we can make an analogy with the general theory of 
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propagation of perturbations in relaxing media [15], where the leading edge moves at the ve- 
locity a f and rapidly decaying harmonics are formed. That part of the signal represented 
by slowly decaying harmonics moves at the velocitya e, af > ae. For a gas suspension, the 
"apparent" velocity of the RW head changes over time from af to a e [16]. As can be seen from 
Fig. 5, the transition to the equilibrium sonic velocity occurs more rapidly with a reduc- 
tion in particle diameter. 

The decay of the leading edge of the perturbations from the RW can be illustrated by 
using the example of the problem of the decay of a discontinuity for the system of equations 
describing a gas flow in a tube with rigidly fixed particles in an acoustic approximation: 

2 
C o 

Pt+P0ux=0, ut+~Px=--~,  ~>0 (1) 

w i t h  t h e  i n i t i a l  c o n d i t i o n s  x > 0, P = P+, u = 0; x S 0, p = p - ,  u = 0, p+ > p- .  i t  i s  a s -  
sumed t h a t  t h e  p a r t i c l e s  e x e r t  a f o r c e  on t h e  gas  p r o p o r t i o n a l  t o  t h e  v e l o c i t y  o f  t h e  g a s .  
At C D = 24 /Re ,  we o b t a i n  a ~ d -2 Sys tem (1)  r e d u c e s  t o  t h e  we l l -known  t e l e g r a p h  e q u a t i o n  
( w i t h o u t  l o s s  o f  g e n e r a l i t y ,  we can t a k e  P0 = 1, c o = 1 ) ,  which  by means o f  t he  s u b s t i t u t i o n  
w = exp ( - a t / 2 ) ,  z = a ( x  + t ) / 2 ,  y = a ( x  - t ) / 2  in  t u r n  r e d u c e s  t o  t h e  form 

wzy -}- w/4 = 0. (2) 

Having used the solution of Eq. (2) found in [17] by Riemann's method, we can represent the 
solution of system (i) in the form 

p ( x , t ) =  ~ P0(~)~ ;~ + J0(- -~)  d~ + ( P 0 ( x - - t ) + P 0 ( X + 0 ) / 2  exp(--~t /2) ,  (3) 
t 

where  ~ = a 2 ( ( x  - ~)2 _ t 2 ) 0 . s / 4 ;  J0 ,  Jz  a r e  z e r o t h - a n d  f i r s t - o r d e r  B e s s e l  f u n c t i o n s .  

I t  f o l l o w s  f rom (3)  t h a t  t h e  a m p l i t u d e  o f  t h e  d i s c o n t i n u i t y ,  p r o p a g a t i n g  t o  t h e  r i g h t  
( b e i n g  t h e  a n a l o g  o f  t h e  RW in  t h e  p r e s e n t  c a s e ) ,  changes  in  a c c o r d a n c e  w i t h  t h e  law [p] = 
0.5(9* -- p-) exp (--at/2). 

Figure 6 shows results of calculations with Eq. (3) at p+ = 3, p- = 1 for the moment 
of time t = ! with a = 25, 4, and 0.04 (lines 1-3). It is evident that an increase in the 
coefficient ~, corresponding to a reduction in particle diameter, leads to decay of the lead- 
ing edge. 

Thus, we numerically analyzed the wave pattern of flow which develops in the dispersion 
of a cloud of particles with an appreciable concentration of the disperse phase. Quantita- 
tive estimates were given for the attenuation of the shock wave which occurs in a pure gas 
with variation of the initial parameters of the mixture. We also determined the RW in the 
mixture and found its structure. It was shown that, in contrast to gas dynamics (equilibrium), 
the leading edge of the RW propagates at a variable velocity which changes from af to a e dur- 
ing flow. A comparison with the available experimental results [4] permits the conclusion 
that the mathematical model adequately describes the phenomenon for appreciable concentra- 
tions. 

We thank B. E. Gel'fand for his assistance in the investigation. 
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CANONICAL TENSOR IN THE THEORY OF ELASTICITY 

V. V. Kuznetsov UDC 539.3 

The study [I] presented a noncanonical form of a symmetrical tensor whereby the tensor 
assumes the simplest possible (diagonal) form in principal axes. Here, we define a symmetri- 
cal tensor which changes the quadratic form of the potential energy in a unit volume of an 
elastic body to canonical form. It is shown that such a transformation can be made by an 
appropriate selection of two constants in a form analogous to the generalized Hooke's law. 

The stress-strain state in an elementary volume of an elastic body is characterized by 
the stress tensor aij and the strain tensor eij (i, j = i, ..., 3). The components of these 
tensors are connected by the elasticity relations 

o~j = bij~k~. (i) 

Here and below, bijkm is the tensor of the elastic constants. 
twice-repeated subscripts. In an isotropic elastic body 

Summation is carried out over 

(2) 

where X and ~ are the Lame constants; 6ij is the Kronecker symbol. 

We will define the canonical tensor sij as a tensor having components connected with 
the components of the strain tensor by the same relations that connect the components of the 
stress tensor with the components of the canonical tensor, i.e., 

sij = c ~ j h ~ ;  ( 3 )  
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